From graph to manifold Laplacian: The convergence rate
نویسندگان
چکیده
منابع مشابه
From graph to manifold Laplacian: The convergence rate
The convergence of the discrete graph Laplacian to the continuous manifold Laplacian in the limit of sample size N → ∞ while the kernel bandwidth ε → 0, is the justification for the success of Laplacian based algorithms in machine learning, such as dimensionality reduction, semi-supervised learning and spectral clustering. In this paper we improve the convergence rate of the variance term recen...
متن کاملfrom linguistics to literature: a linguistic approach to the study of linguistic deviations in the turkish divan of shahriar
chapter i provides an overview of structural linguistics and touches upon the saussurean dichotomies with the final goal of exploring their relevance to the stylistic studies of literature. to provide evidence for the singificance of the study, chapter ii deals with the controversial issue of linguistics and literature, and presents opposing views which, at the same time, have been central to t...
15 صفحه اولManifold Regularization for SIR with Rate Root-n Convergence
In this paper, we study the manifold regularization for the Sliced Inverse Regression (SIR). The manifold regularization improves the standard SIR in two aspects: 1) it encodes the local geometry for SIR and 2) it enables SIR to deal with transductive and semi-supervised learning problems. We prove that the proposed graph Laplacian based regularization is convergent at rate root-n. The projecti...
متن کاملConvergence of Laplacian spectra from random samples
Eigenvectors and eigenvalues of discrete graph Laplacians are often used for manifold learning and nonlinear dimensionality reduction. It was previously proved by Belkin and Niyogi [3] that the eigenvectors and eigenvalues of the graph Laplacian converge to the eigenfunctions and eigenvalues of the Laplace-Beltrami operator of the manifold in the limit of infinitely many data points sampled ind...
متن کاملLaplacian Sum-Eccentricity Energy of a Graph
We introduce the Laplacian sum-eccentricity matrix LS_e} of a graph G, and its Laplacian sum-eccentricity energy LS_eE=sum_{i=1}^n |eta_i|, where eta_i=zeta_i-frac{2m}{n} and where zeta_1,zeta_2,ldots,zeta_n are the eigenvalues of LS_e}. Upper bounds for LS_eE are obtained. A graph is said to be twinenergetic if sum_{i=1}^n |eta_i|=sum_{i=1}^n |zeta_i|. Conditions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Computational Harmonic Analysis
سال: 2006
ISSN: 1063-5203
DOI: 10.1016/j.acha.2006.03.004